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Dealing With Bias in Estimating Uncertainty and Risk
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Abstract.-  To quantify the uncertainty of fisheries stock assessment results or the risk of alternative management actions, we need
to characterize the cumulative frequency distribution of the quantities of interest.  Fisheries management quantities, such as biomass
or fishing mortality rate, can only take positive values.  Furthermore, estimators for fisheries management quantities from many
assessment models are biased as a result of non-linearity in the models.  Standard methods which assume a Gaussian distribution,
failed to adequately account for the skew.  The bootstrap percentile method did not adjust for the statistical estimation bias.  The
bootstrap bias corrected percentile technique appears to be best suited for general application.

Introduction

There is increasing recognition for the merits of
explicitly taking into account the uncertainty of stock
assessment results and the risks associated with alter-
nate actions, when considering fisheries management
decisions (Restrepo et al 1992).  Incorporation of knowl-
edge about uncertainty and risk for the provision of fish-
eries management advice is an integral aspect of the Pre-
cautionary Approach (ICES 1997).  Practically, this
implies that it is not sufficient to estimate the statistics
for quantities of interest.  We must also investigate their
probability distributions.

The format in which uncertainty and risk results
are conveyed is influenced by the specific management
regime.  In the Northeast USA, fishery managers are
receiving this type of information in the form of cumu-
lative frequency distributions and confidence intervals
for the terminal year population quantities, such as
spawning stock biomass (Anon. 1997).  These uncer-
tainties are also carried forward into short- and medium-
term projections in order to evaluate alternative harvest
strategies.  In eastern Canada, fishery managers are re-
ceiving this kind of information in the form of a risk
profile for achieving identified goals, such as an increase
in spawning stock biomass, over a range of quota op-
tions in the forecast year (DFO 1997).  They are con-
cerned with the risk of achieving established reference
points in the short-term projection if they choose a spe-
cific quota.

The risk profile is directly related to and derived
from the cumulative frequency distributions of the esti-
mated fisheries management quantities of interest.  This
is readily appreciated if one considers a surface con-
structed of cumulative frequency distributions for fish-
ing mortality rate over a range of quotas (Fig. 1). The
risk profile is the cross section of that surface at the es-

tablished fishing mortality reference point.  Therefore,
the cumulative frequency distribution forms the basis
of statements concerning uncertainty and risk.

It is recognised that estimators of fisheries manage-
ment quantities from many typical fisheries assessment
models are biased (Gavaris 1993, Prager 1994).  This
statistical bias arises from the non-linearity in the mod-
els.  There may be other sources of bias, but here I only
consider this statistical bias.  The purpose of this study
is to explore the impact of this statistical bias on the
cumulative frequency distributions and the resulting risk
profiles.

Methods

I describe three general methods for obtaining the
cumulative frequency distribution of an arbitrary quan-
tity, η, which is a function of estimated parameters, ξ,
from some model. Let ( )ξη ˆˆ g=  where g is the transfor-
mation function.

From an Assumed Distribution Type.

An obvious default method for constructing the
cumulative frequency distribution is to invoke the Cen-
tral Limit Theorem and assume that a Gaussian distri-
bution adequately approximates the frequency distribu-
tion of the estimator η̂ . Applying the estimated statis-
tics for η̂ , the desired cumulative frequency distribu-
tion is obtained by assuming ( ) ( )( )ηηηη ˆ,ˆˆ~ N VarBias− .
Note that this assumes the approximation

( )( ) ( )ηηη ˆˆˆ VarBiasVar ≅− . This approach will be referred
to as the standard method.

The variance and bias of η̂  can be obtained using
the methods described in Ratkowsky (1983):
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( ) ( )
= ξη ˆcovˆ TGGtrVar

( ) ( ) ( )[ ] 2ˆcovˆˆ ξξη WtrBiasTGBias +=  ,

where G is the vector of first derivatives of g with re-
spect to parameters and W is the matrix of second de-
rivatives of g with respect to parameters.

The covariance of the model parameters ξ̂ , can be
estimated using the common linear approximation
(Kennedy and Gentle 1980),

( ) ( ) ( )[ ] 12 ˆˆˆˆ −
= ξξσξ JJCov T  ,

where $σ 2 is the mean square residual and ( )ξ̂J  is the
Jacobian matrix of the vector-valued objective function.
The bias of the model parameters can be obtained using
Box’s (1971) approximation.
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where ( )ξ̂iJ  are vectors of the first derivatives with re-
spect to ξ of the vector-valued objective function and

( )ξ̂iH  are the Hessian matrices with respect to ξ .

From Bootstrapping.

Non-parametric bootstrap techniques offer the ad-
vantage of not making any assumptions about the error
distribution. The bootstrap samples are used to calcu-

late the bootstrap replicate estimates, bη̂ , of the quan-
tity of interest. I considered two bootstrap methods, the
percentile and the bias corrected percentile, for using
the bootstrap replicate estimates to construct the cumu-
lative frequency distribution.

The percentile method (Efron 1982) is a simple and
direct way of forming an empirical cumulative frequency
distribution. The probability that η̂  is less than or equal
to some value is defined as the proportion of bootstrap
replicates, bη̂ , less than or equal to that value:

( ) { } { }
B

x
xx

b ≤=≤=Ω ηη
ˆ#ˆˆ Prob  ,

where B is the total number of bootstrap replicates. For
conceptual and graphing purposes, it is convenient to
consider the empirical cumulative frequency distribu-
tion as the set of paired values ( )bηα r

, , where bηr  are the
ordered bootstrap replicates and α are the respective
probability levels equal to 1/B,2/B,3/B,...B/B.

Frequently, the median of the bootstrap percentile
density function does not equal the estimate obtained
with the original data sample.  The bias-corrected per-
centile method (Efron 1982) makes an adjustment for
this type of bias. The bias-corrected percentile method
can be thought of as an algorithm to replace the bηr  in
the paired values ( )bηα r

,  with the bias adjusted quantity
b
BCηr . The notation ( )1ˆ −Ω  or ( )1−Φ  is used to represent

the inverse distribution function, i.e. the critical value
corresponding to the specified probability level.  For
each α in the paired values ( )bηα r

, , calculate the bias

Figure 1.  The risk that fishing mortality rate in the forecast year will exceed an established reference level, say
0.25, for some quota option, can be obtained as the cross section of the surface constructed from cumulative
frequency distributions over that range of quotas.
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adjusted quantity b
BCηr :

( )( )αη zzb
BC +ΦΩ= −

0
1 2ˆr

.

Here, Φ is the cumulative distribution function of a
standard normal variate, ( )αα

1−Φ=z  and
( )( )η̂ˆ1

0 ΩΦ= −z .  The term z
0
 achieves the bias adjust-

ment.  If the median of the bootstrap density function is
equal to η̂ , then ( )η̂Ω̂  will be 0.5, z

0
 will be zero, and

b
BCηr  will equal bηr  (i.e. no bias adjustment).  Note that

computations are not carried out for α=B/B because
( )11 =Φ= − ααz  is not defined.

Results

To illustrate the potential differences in outcomes,
the three general techniques were applied to the results
from a specific age structured analytical fisheries as-
sessment model (Annex 1) using data from eastern
Georges Bank haddock. In this example, the quantity of
interest for fisheries management was spawning stock
biomass, SSB. The cumulative frequency distributions
of terminal year SSB, were derived and compared. The
cumulative frequency distributions of SSB in the fore-
cast year were also derived and used to obtain the risk
of not achieving growth relative to the terminal year as
a function of quota. In this example, a model-conditioned
non-parametric bootstrap approach was employed.
Bootstrap samples were obtained by adding the set of
residuals obtained by sampling with replacement, to the
model predicted values.

Consider first the cumulative frequency distribu-
tion for SSB in the terminal year of the assessment, the
type of advice portrayed in the NMFS SAW Advisory

Reports.  Figure 2 displays the results from the three
approaches.  The standard method gives the typically
smooth and symmetric Gaussian distribution centred on
the bias adjusted mean and characterised by the esti-
mated variance.  The empirical cumulative frequency
distribution derived by the percentile method displays
some skew and it is centred on the biased estimate.  The
corresponding 90% confidence interval associated with
this approach gives values of [28,362t < SSB < 52,954t].
The bias-corrected percentile method appears to fully
compensate for the bias and centres the empirical cu-
mulative frequency distribution on the bias-adjusted
estimate.  It displays a greater degree of skew.  For this
example, the corresponding 90% confidence interval
from the bias-corrected percentile method is more pes-
simistic with values of [24,249t < SSB < 44,968t].

Now consider how the statistical bias affects the
risk profile for not achieving SSB growth in the fore-
cast year, the kind of advice given in DFO Stock Status
Reports.  Recall that the risk profile is not a cumulative
frequency distribution but a cross section of several cu-
mulative frequency distributions.  Figure 3 compares
the results from the three approaches.  Here again we
see that the bias-corrected percentile method appears to
compensate for the bias and results in a profile that is
shifted towards that obtained with the standard method.
The risk profile obtained from the percentile method
gives a more optimistic outlook.  For example, based on
the percentile method, a 1997 quota of 5,000t implies
an 18% risk of not achieving growth in SSB.  This com-
pares to a risk of 40% obtained from the bias-corrected
risk profile.

Figure 2.  Comparison of the cumulative frequency dis-
tribution of spawning stock biomass in the terminal year
indicates that the standard method does not reflect the skew
displayed by the bootstrap methods.  The percentile boot-
strap method does not account for estimation bias and is
shifted.

Figure 3.  Comparison of the risk profiles for not achiev-
ing growth of the spawning stock biomass in the forecast
year shows that results from the percentile method are
shifted relative to the standard and bias corrected meth-
ods.  For low risk levels, the distributional assumptions
required by the standard method probably lead to errone-
ous results.
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Discussion

Many fisheries management quantities of interest
can only take positive values.  In such instances, assum-
ing a Gaussian approximation for these quantities does
not capture the implied skew of their cumulative fre-
quency distributions.  This effect was apparent in the
example using SSB.  Consequently, the lower tail ob-
tained with the standard method was considerably longer
when compared to the bootstrap approaches.  When the
estimated variance is large, the lower confidence bound
obtained from the standard method may be negative.  It
would appear that confidence statements based on re-
sults from the standard method might not be reliable for
small cumulative probability levels. Assuming a log-
normal distribution for some quantities may provide a
better approximation, however theoretical justification
may be lacking. For instance, in the example, it might
be reasonable to assume, and there is some evidence to
suggest, that the estimator of population abundance at
age is lognormally distributed. The SSB then is the sum,
multiplied by weight and maturity at age, of population
abundance. The sum of lognormally distributed vari-
ables is not lognormal.

The bootstrap methods demonstrated that the em-
pirical distribution for the SSB example was skewed.
The results from the percentile method were shifted sub-
stantially, however.  Confidence intervals or risk state-
ments based on the percentile method can be markedly
different from those based on the bias-corrected per-
centile method.  Efron and Tibshirani (1993) argue that
confidence statements based on the bias-corrected and
accelerated method offer a substantial improvement over
the percentile method, both in theory and in practice.
The accelerated method was not used here.  Loh and
Wu (1987) indicated that the accelerated method might
offer only marginal improvement over the bias-corrected
method, but this aspect merits further investigation for
the stock assessment problem.  Nevertheless, we may
conclude that the bias-corrected method should provide
more accurate confidence statements than does the
simple percentile method.

Recognising the potential to inadequately
characterise the shape of the frequency distribution with
the standard method, and the failure of the percentile
method to account for estimation bias, the bootstrap bias-
corrected percentile technique is recommended for gen-
eral application.
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Annex 1: Fisheries Assessment Model

The available data were:

C
a,t

 = catch at age, age a = 0,1 … 8, time t = 1986,
1987 … 1996.
I

a,t
 = DFO spring survey, age a = 1, 2 ... 8 , time t =

1986, 1987... 1997.

The employed model formulation assumed that the
error in the catch at age was negligible.  The errors in
the abundance indices were assumed independent and
identically distributed after taking natural logarithms of
the values.  The annual natural mortality rate, M, was
assumed constant and equal to 0.2.  A model formula-
tion using as parameters the natural logarithm of popu-
lation abundance at the beginning of the year was con-
sidered because of close-to-linear behavior for such a
parameterization (Gavaris 1993).  Thus, a total of 16
parameters were estimated:

θ
a,t’

, ages a = 1, 2, ... 8 at time t’  1997,
κ

a
, ages a = 1, 2, ... 8.

A solution for the parameters was obtained by mini-
mizing the sum of squared differences between the natu-
ral logarithm observed abundance indices and the natu-
ral logarithm population abundance adjusted for
catchability by the calibration constants:

( ) ( )( ) ( )( )( )2

,
,,

,

2

,
,

ˆlnˆlnˆ,ˆˆ,ˆ ∑∑Ψ +−==
ta

taata
ta

ta
ta

NI θκκθψκθ

For convenience, the model’s population abundance
( )Na t,
$θ  is abbreviated by Na t, .  At time t’ , the popula-

tion abundance was obtained directly from the param-
eter estimates, N ea t

a t

,

$
,

′ = ′θ .  For all other times, the popu-
lation abundance was computed using the virtual popu-
lation analysis algorithm, which incorporates the com-
mon exponential decay model

( )N N ea t t t a t

F M ta t a

+ +
− +=∆ ∆

∆
, ,

,  .

Year was used as the unit of time.  Therefore, ages
were expressed as years and the fishing and natural
mortality rates were annual instantaneous rates.  The fish-
ing mortality rate, Fa t, , exerted during the time interval
t t t to + ∆ , was obtained by solving the catch equation,

( )( )
( )C

F tN e

F M t
a t

a t a t

F M t

a t a

a t a

,

, ,

,

,

=
−

+

− +∆

∆

∆
1

 ,

using a Newton-Raphson algorithm.  The fishing mor-
tality rate for the oldest age in the last time interval of
each year was assumed equal to the weighted average
for ages fully recruited to the fishery during that time
interval
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